Freeform Phononic Waveguides

نویسندگان

  • Georgios Gkantzounis
  • Abdelkrim Khelif
  • Sarah Benchabane
چکیده

We employ a recently introduced class of artificial structurally-disordered phononic structures that exhibit large and robust elastic frequency band gaps for efficient phonon guiding. Phononic crystals are periodic structures that prohibit the propagation of elastic waves through destructive interference and exhibit large band gaps and ballistic propagation of elastic waves in the permitted frequency ranges. In contrast, random-structured materials do not exhibit band gaps and favour localization or diffusive propagation. Here, we use structures with correlated disorder constructed from the so-called stealthy hyperuniform disordered point patterns, which can smoothly vary from completely random to periodic (full order) by adjusting a single parameter. Such amorphous-like structures exhibit large band gaps (comparable to the periodic ones), both ballistic-like and diffusive propagation of elastic waves, and a large number of localized modes near the band edges. The presence of large elastic band gaps allows the creation of waveguides in hyperuniform materials, and we analyse various waveguide architectures displaying nearly 100% transmission in the GHz regime. Such phononic-circuit architectures are expected to have a direct impact on integrated micro-electro-mechanical filters and modulators for wireless communications and acousto-optical sensing applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elastic wave propagation along waveguides in three-dimensional phononic crystals

We investigate theoretically using the finite difference time domain method acoustic wave propagation along waveguides in three-dimensional phononic crystals constituted of lead spherical inclusions on a face-centered cubic lattice embedded in an epoxy matrix. The transmission spectra of the perfect phononic crystal for transverse and longitudinal acoustic waves are shown to depend strongly on ...

متن کامل

Finite element analysis of surface modes in phononic crystal waveguides

The study of surface modes in phononic crystal waveguides in the hypersonic regime is a burgeoning field with a large number of possible applications. By using the finite element method, the band structure and the corresponding transmission spectrum of surface acoustic waves in phononic crystal waveguides generated by line defects in a silicon pillar-substrate system were calculated and investi...

متن کامل

Broadband evolution of phononic-crystal-waveguide eigenstates in real- and k-spaces

Control of sound in phononic band-gap structures promises novel control and guiding mechanisms. Designs in photonic systems were quickly matched in phononics, and rows of defects in phononic crystals were shown to guide sound waves effectively. The vast majority of work in such phononic guiding has been in the frequency domain, because of the importance of the phononic dispersion relation in go...

متن کامل

Acoustic confinement and waveguiding with a line-defect structure in phononic crystal slabs

We present a new way of forming phononic crystal waveguides by coupling a series of line-defect resonators. The dispersion proprieties of these coupled resonator acoustic waveguides ͑CRAW͒ can be engineered by using their geometrical parameters. We show that single-mode guiding over a large bandwidth is possible in CRAW formed in a honeycomb-lattice phononic crystal slab of holes in zinc oxide. I...

متن کامل

Watching surface waves in phononic crystals.

In this paper, we review results obtained by ultrafast imaging of gigahertz surface acoustic waves in surface phononic crystals with one- and two-dimensional periodicities. By use of quasi-point-source optical excitation, we show how, from a series of images that form a movie of the travelling waves, the dispersion relation of the acoustic modes, their corresponding mode patterns and the positi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017